The regulation of BK channel activity by pre- and post-translational modifications

نویسندگان

  • Barry D. Kyle
  • Andrew P. Braun
چکیده

Large conductance, Ca(2+)-activated K(+) (BK) channels represent an important pathway for the outward flux of K(+) ions from the intracellular compartment in response to membrane depolarization, and/or an elevation in cytosolic free [Ca(2+)]. They are functionally expressed in a range of mammalian tissues (e.g., nerve and smooth muscles), where they can either enhance or dampen membrane excitability. The diversity of BK channel activity results from the considerable alternative mRNA splicing and post-translational modification (e.g., phosphorylation) of key domains within the pore-forming α subunit of the channel complex. Most of these modifications are regulated by distinct upstream cell signaling pathways that influence the structure and/or gating properties of the holo-channel and ultimately, cellular function. The channel complex may also contain auxiliary subunits that further affect channel gating and behavior, often in a tissue-specific manner. Recent studies in human and animal models have provided strong evidence that abnormal BK channel expression/function contributes to a range of pathologies in nerve and smooth muscle. By targeting the upstream regulatory events modulating BK channel behavior, it may be possible to therapeutically intervene and alter BK channel expression/function in a beneficial manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Human Thioredoxin System: Modifications and Clinical Applications

The thioredoxin system, comprising thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site ( Trp-Cys-Gly-Pro- Cys-Lys-). Different factors are involved in the regulation of T...

متن کامل

S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK) channels

Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK) channels are important determinants of their (patho)physiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation) represents a major reversible, post-translational modi...

متن کامل

Regulation of large conductance calcium- and voltage-activated potassium (BK) channels by S-palmitoylation.

BK (large conductance calcium- and voltage-activated potassium) channels are important determinants of physiological control in the nervous, endocrine and vascular systems with channel dysfunction associated with major disorders ranging from epilepsy to hypertension and obesity. Thus the mechanisms that control channel surface expression and/or activity are important determinants of their (path...

متن کامل

Managing the complexity of communication: regulation of gap junctions by post-translational modification

Gap junctions are comprised of connexins that form cell-to-cell channels which couple neighboring cells to accommodate the exchange of information. The need for communication does, however, change over time and therefore must be tightly controlled. Although the regulation of connexin protein expression by transcription and translation is of great importance, the trafficking, channel activity an...

متن کامل

Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior

In most tissues, the function of Ca(2+)- and voltage-gated K(+) (BK) channels is modified in response to ethanol concentrations reached in human blood during alcohol intoxication. In general, modification of BK current from ethanol-naïve preparations in response to brief ethanol exposure results from changes in channel open probability without modification of unitary conductance or change in BK...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014